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Abstract—The paper presents a method for automatically
detecting pallets and estimating their position and orientation.
For detection we use a sliding window approach with efficient
candidate generation, fast integral features and a boosted clas-
sifier. Specific information regarding the detection task such as
region of interest, pallet dimensions and pallet structure can be
used to speed up and validate the detection process. Stereo re-
construction is employed for depth estimation by applying Semi-
Global Matching aggregation with Census descriptors. Offline
test results show that successful detection is possible under 0.5
seconds.
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I. INTRODUCTION

Integrating Automated Guided Vehicles in industrial envi-
ronments for transporting materials is becoming more preva-
lent. Automation leads to cost and time reduction at installation
time and during working time. However, this introduces many
safety problems and the requirement for precision in localizing
the AGV within the facility and other objects around it.
Special attention should be paid to the operation of loading
and unloading pallets because incorrect positioning could lead
to accidents.

The goal of this research is to provide a method for
pallet detection and operation point detection. This objective is
achieved using a combination of stereo reconstruction methods
based on stereo images and object detection from monocular
images. The method would serve as a faster and more flexible
alternative to laser scanners.

Throughout this paper we will use the following terms:
AGV - Automated Guided Vehicle, refers to automated fork-
lifts for logistic operations; operation point - 3D position of
the center of the frontal view of the pallet or the future position
of the unloaded pallet; load handling - operations pertaining
loading or unloading of palletized goods by the AGV.

II. RELATED WORK

The technical literature for the specific task of pallet
detection is scarce, almost insexistent. We will discuss related
object detection methods and also provide an analysis of
current systems in use. The papers [1], [2] discuss solutions
for load detection and de-palletizing. Their work focuses on
parcel detection and handling using a photonic mixing device
(PMD) camera. The authors have identified multiple modalities
for automated load detection: no detection at all - inflexible;
border detection with laser scanners - slow and cheap; stereo
cameras - sensitive to lightning conditions; uncalibrated vision

and 3D laser assisted image analysis; 2D range imagery - no
orientation avaliable; model based range images; 2D camera
and laser scanner.

The first approach we discuss for automatic load handling
entails precise positioning of both the AGV and the pallets
to be loaded. This eliminates the need to detect the location
of the pallet at load time but can lead to positioning errors.
Small errors accumulate in time and can lead to accidents due
to falling pallets or incorrect gripping. Another alternative is
to use laser scanners to estimate the position of the pallet by
tracing the contours of objects.

General vision-based object detection methods rely on
extracting meaningful and discriminative features that enable
the separation of the object from the background. Gradi-
ent information is essential for this task and many feature
incorporate this by constructing histograms: Histogram of
Oriented Gradients [3]; Scale Invariant Feature Transform [4];
Weber Local Descriptors [5]. The calculation of histogram type
features can be accelerated by employing integral images [6].

Object detection can be performed with the technique of
sliding detection windows. By positioning rectangles at differ-
ent positions and by changing their size we can investigate
whether an object is present or not. For fast classification
the two main options are Boosted classifiers [7] with soft
cascading [8] and Support Vector Machines with fast kernels
such as linear SVM and Histogram Intersection SVM [9].

III. REQUIREMENTS

The automated load handling system is required to perform
accurate pallet detection and operation point estimation. It
must also provide the orientation of the pallet. The input of
the system consists of a pair of images, an operation point
position request, information about operation type (the number
of pallets, the level, number of reference points, storage
type), pallet dimensions, 3D static map. During loading and
unloading operations the AGV travels to the operation point
and stops at a distance of approximately 2.5 meters. At this
position the system must provide the position of the pallets to
enable corrections to AGV path. As the AGV approaches the
pallets the positions of the pallets are updated online up to a
certain distance of approximately 1.8 meters.

For loading and unloading operations the system must
detect and provide the 3D position of the pallet or pallets with
an accuracy of: 5 cm (@ 1σ) and 1 deg (@ 1σ) at a distance
of 2.5 m from the pallets; 1 cm (@ 1σ) and 1 deg (@ 1σ) at
a distance of 2 m from the pallets [10]



From the analysis of the requirements we can obtain the
minimal requirements for the hardware. In the following we
provide details about our hardware components and show that
the current setup can satisfy the precision constraints.

A. Hardware components

The two main components of the system are the sensors and
the processing unit. We employ two Manta G-223 NIR cam-
eras mounted in canonical horizontal configuration (displaced
horizontally and facing the same way). The resolution of the
cameras is 2048px by 2048px. The cameras are equipped with
Schneider Cinegon lenses with a focal length of 4.8mm and F
number 1.8. An auxiliary light source comprised of several
LEDs is positioned between the cameras. The cameras are
mounted on the AGV behind the forks and are lowered on
demand to grant view of scene in front of the forks.

The processing unit consists of an industrial PC ADLINK
MXC-6301 which is a high-performance fanless embedded
computer integrating a 3rd generation Intel Core i7 processor
and QM77 chipset to provide powerful computing and superior
graphic performance. The AGV provides a constant frame rate
trigger to acquire images from the cameras. When this was not
an option - as in our laboratory - we have used an Arduino Uno
microcontroller for synchronous triggering of the two cameras.
In the following we demonstrate that our current camera setup
can provide the accuracy needed.

B. Horizontal field of view

The field of view for the stereo region must be wider
than two pallet widths in the working range of 1.5-2.5m.
The horizontal field of view at distance Z has the following
formula:

Xfov = 2 · Z · tan(θ/2) =
Z · µ · w

f
(1)

where θ = 2atan(µ·w2f ) is the field of view angle, µ =
0.0055 is the size a single sensor cell and w = 2048 is the
horizontal resolution of the camera. We calculate this value at
1.5 m and 2.5 m to obtain 3520 mm and 5866 mm respectively.
Considering that the longer side of a single pallet has 1200
mm this lateral field of view can contain two pallets starting
at minimal working range. Usually pallets are operated from
their 800 mm side, this means that up to 4 pallets can fit in
the horizontal field of view.

C. Depth resolution

The depth error must be lower than 1cm in the working
range. For this we investigate the depth resolution. The stereo
reconstruction returns disparities and the depth is inversely
proportional to the disparity by the relation:

Z =
B · f
d

(2)

where B = 195mm is the baseline length in metric units
(the lateral displacement between the two cameras), and f =
4.8mm = 872px is the focal length, and d is the disparity

value. This hyperbolic relation entails that depth errors will be
larger at larger distances. Starting from 2 we can express the
change in depth by differentiating and arranging the terms:

∆Z

∆d
= −B · f

d2
= − Z2

B · f
⇒ |∆Z| = Z2

B · f
·∆d (3)

In the previous equation ∆d symbolizes the smallest dis-
parity change and is set to 0.25 ∗ µ. Plugging in the constants
for B and f results in a depth resolution of 3.30 mm at a
distance of 1.5 m and of 9.18 mm at a distance of 2.5 m. Both
are lower than the required 10 mm and 50 mm respectively.

D. Orientation angle

The angle of interest is the angle formed by the pallet in the
xOz plane (the plane parallel to the floor) with the x axis (the
horizontal axis). Starting from the expression of the angle we
can express the difference in depth that needs to be observed
for a standard 800 mm width pallet that is tilted by 1 degree:

tan(α) =
z2 − z1
x2 − x1

⇒ z2 − z1 = (x2 − x1)tan(α) (4)

This results in a depth difference of approximately 14mm
which is within the stereo estimation precision. The angle and
depth estimation can be made more robust by fitting a plane
to the region of the detected pallets in order to aggregate the
results from a larger area.

E. Detection pixel error

The monocular detector must provide the position of the
pallets accurately along the x and y direction. From the
requirements the positioning error must be less than 1 cm at
1.5 m. Since the change in the position ∆x is related to the
change in pixels ∆u by :

∆x =
∆u · Z
f

⇒ ∆u =
∆x · f
Z

(5)

Here, the focal length is expressed in pixels: f = 872px.
We can express the maximum pixel positioning error for the
detector to be approximately 5.81 pixels at 1.5 m and 17.45
pixels at 2.5 m. A similar relation holds for y (mm) and v
(pixels) but the height of the pallet does not change, so y is
relatively constant.

IV. PROPOSED APPROACH

The proposed approach relies on combining detection from
monocular images and stereo reconstruction to estimate the
position of the operation point. Stereo depth estimation re-
quires two calibrated cameras and can perform accurate recon-
struction under 1 second of the desired scene. By combining
intensity and depth features the pallets and other objects can
be identified.

In order to provide the operation point the system must per-
form the following processing steps: stereo image rectification;
stereo matching; pallet detection from the left image; stereo



reconstruction and plane fitting on the pallet regions that results
in the operation point in 3D. Rectification and reconstruction
requires the intrinsic and extrinsic camera parameters from
a calibration procedure. For pallet detection we follow the
standard pipeline for object detection: preprocessing, candidate
generation, feature extraction, classification, refinement and
verification. The stereo matching algorithm relies on the work
of Hirschmuller et. at from [11]. In the following we describe
each step of the detection algorithm. The most important
parameter settings are given in Table I.

A. Stereo Matching and Reconstruction

For stereo matching we calculate the Census transform
of the rectified image pairs [12], [13]. The local cost vol-
ume will be the Hamming distance of the Census descrip-
tors. Hirschmuller’s Semi-Global Matching [11] aggregation
method is applied to the cost volume. The energy function is
minimized by considering 4 main propagation directions: to
the left, to the right, downwards and upwards. The four prop-
agation steps are performed simultaneously on four separate
threads. The aggregated cost volume is checked for consis-
tency, quadratic subpixel interpolation is applied and lastly the
disparity image is filtered with a median filter. We are also
experimenting with other stereo matching methods: standard
Sum of Absolute Differences; fast normalised cross-correlation
[14], scanline dynamic programming matching [15], [16].

B. Pallet detection steps

We model the pallet by three legs separated by two pockets,
see Figure 1. The relative position of the legs and the aspect
ratio are given by the pallet dimension specifications and also
from experiments. This model corresponds to the frontal view
of a standard Euro pallet with two pockets. In theory, this
model is simple and one would expect that regions A, C and
E will have the same visual features. However, in practice
there is a lot of variability in appearance both for pallet legs
(due to material hanging from pallet load, different colorings
of pallets) and especially for pallet pockets. Pocket regions
can be pitch dark when loading from the ground floor, but can
also be the brightest zone from the image when the light is
coming from behind the pallet (loading from first floor with
the windows behind the rack). Because we are using grayscale
images for detection in some cases the background and the
pallet may have similar intensity and texture. In the following
we describe each phase of the detection method.

In the preprocessing step the image is filtered by a gaussian
kernel and histogram equalization is performed. Histogram
equalization was found to be useful, even when the exposure
time of the camera was properly set. Since the upper half of
the input image is covered by forks, and also, this part does not
contain useful information we disregard it from the processing
steps. For similar reasons the lower part and the left and right
extremities are not useful. It follows that all processing is
done on a central stripe. Even though we use only a restricted
region of the large image, high image resolution is important
for precise localization.

Candidate generation is the operation that provides can-
didate bounding boxes for the classifier. Exhaustive checking
of every possible bounding box would be unfeasible and it is

also not necessary. The main cue for candidate is the image
gradient. To obtain the gradient we filter the image with Sobel
filters, one for each axis and threshold the images at T = 10.
This low threshold is necessary to capture all pallets. Since
we always work with a near frontal view of the pallet, only
horizontal and vertical edge detection is necessary. Sobel filter
was found to perform best compared to other filters. Canny
edge detection could be used, but the parameters need to be
changed adaptively and it also takes more time. The next
step is to find horizontal guidelines that restrict the search
space drastically. For this we accumulate vertical gradient
values (horizontal lines) along each line of the image. The
local maxima of this will represent dominant horizontal lines.
By controlling the number of neighbors that are considered
(vnh) for local maximum detection we can adjust the number
of guidelines that will be generated. After the horizontal
guidelines are detected vertical lines are searched only between
two horizontal lines. Vertical lines are detected when the
sum of horizontal gradient values along the line are above
a threshold P = 0.1 percent. We also restrict the length of
these lines - which corresponds to the pallet height - based on
empirical data. After all vertical lines are detected we consider
only rectangle candidates that have lines at extremities. It
is also required for a candidate to have vertical lines inside
corresponding to the pallet pockets as described by the pallet
model. The position of the interior lines is permitted to change
in a small interval. Even after enforcing the before mentioned
minimal requirements on the possible candidates still a large
number of candidates remain (more than 300000 for a single
image).

Feature extraction module extracts the same feature vector
for each candidate. We use 4 types of features: difference
of mean intensity, standard deviation of intensity, mean edge
strength along x/y directions, mean disparity and disparity
difference. Each feature is calculated from a rectangular region
efficiently using integral images. For disparity features we ig-
nore invalid disparities and adjust the region area accordingly.
Each feature is normalised by the area of the rectangle. The
resulting feature vector consists of M = 24 features (see
Figure 1): channel 0: mean intensity on region A; channels 1-4:
mean intensity difference between regions B-E and A; channels
5-9: standard deviation of intensity on regions A-E; channels
10-18: edge strength for each left, lower and right border of
the regions A, C and E (green rectangles); The edge strength
is the area normalised sum of vertical or horizontal gradient
values; channel 19: mean disparity on region A; channels 20-
23: mean disparity difference between regions B-E and A.

The classifier scores each candidate rectangle by applying
the boosted classifier. AdaBoost learning is performed with
N = 1000 two-level decision trees. Cascaded prediction can
be used for up to 10-100 times faster execution time but
we have found that in practice it is difficult to estimate the
rejection thresholds. All candidates with scores less than a
given threshold θ are discarded. On the remaining rectangles
we perform non-maximum suppression based on the percent-
age of overlap and classification score. This step is necessary
because multiple detections may correspond to a single object
and we want to retain only the detection with the highest
score. The overlap criteria is R1∩R2

R1∪R2
, where the numerator is

the intersection and the denominator is the union of the two
rectangles in question.



To train the classifier we rely on a manually labeled dataset
with pallets as positive examples and any other regions as
negative examples. For this we have labeled video sequences
of loading and unloading operations from the Elettric80 Viano
warehouse. Each pallet is indicated by a manually drawn
rectangle. During the classifier training we generate candidates
from each image that has ground truth information. The
rectangles that are sufficiently close to actual pallets are used
as positive examples while all other regions are considered
negative examples. We select a random 50-5000 negative
examples from each image. We can perform bootstrapping
rounds by evaluating the classifier on images that do not
contain pallets for additional hard negative samples and retrain
the classifier.

C. Detection postprocessing

There are many correction methods that can be applied
on the generated detections to increase the robustness of the
method.

First, the expected positions of the pallets are known in
advance. For normal loading operation the pallets occupy a
central position and should also have the same position along
the y axis because moving towards the pallets does not change
their vertical position. This information can be used to favor
rectangles that are close to these central positions. We penalize
the scores of detected pallets by a factor that is proportional
to the distance from the expected locations.

Second, since information about the number of pallets from
the scene is available, this can be used to eliminate false
positives. Let this number be n, then we set the classifier
threshold to a low value and we only retain the first n
rectangles according to score values.

Third, we can perform detection on both the left and
right image and find pair correspondences to validate correct
detections. This could also help in estimating the distance to
the pallet. Pallet pair should appear at the same height and the
displacement should coincide with disparity values.

Fourth, we apply tracking and temporal integration to
smooth out the positioning errors. In the case of temporal inte-
gration we perform detection on multiple frames then choose
the mean values for overlapping detections and eliminate
detections that do not have temporal continuity. For tracking
we apply a Kalman filter on 4 dimensions (x,y, width, height).

D. 3D pallet position and orientation

Once detections are available in the form of rectangles the
3D position of the pallet can be estimated by making use of
stereo information. The plane of the frontal view of the pallet is
approximated by Least Squares or RANSAC from the disparity
image. This plane is fitted only to the pallet points from the
legs of the pallet. It provides a more accurate estimation for the
distance to the pallet. The orientation angle can be extracted
by sampling the plane at extremities and calculating the angle.

E. Implementation details and optimization

All processing modules are implemented in C++, compiled
with Visual Studio 2010 compiler with OpenMP multithread-
ing features enabled. Other settings include: fast code opti-

Fig. 1: Model of the pallet employed for detection - the three
regions A,C and E correspond to pallet legs, while B and D
are pockets

TABLE I: Relevant parameters of the detection algorithm

Parameter Description Value
N number of weak learners 1000

M number of features 24

T Sobel edge threshold 10

P threshold percent for line detection 0.1

vnh vertical neighborhood size for NMS 5

hnh horizontal neighborhood size for NMS 3

roi region of interest (x,y,x2,y2) (300,980,1748,1225)

pos relative vertical line positions {0,0.125,0.42,0.58,0.875,1}

B Baseline length 195 mm

f focal length 4.8 mm

P1 penalty for small disparity change 5

P2 penalty for large disparity change 100

mization enabled, fast floating point model, omit frame point-
ers. OpenCV 2.4.5 is the chosen library for image processing
functions. Essential for fast execution is the reliance on integral
images to compute feature sums, predicting with a boosted
classifier and code parallelization.

V. EXPERIMENTAL RESULTS

In this section we present results from detection tests and
distance estimation tests. These are the two essential tasks that
need to be resolved.

For pallet detection we evaluate the detection rate and false
positive rate of different classifiers on the acquired datasets.
We will refer to the two dataset as Viano1 and Viano2.
These consist of image sequences of loading scenes from the
warehouse of Elettric80 at Viano. Detections generated by the
automatic pallet detector are matched to the manually labeled
pallets from each image. Scoring is based on the intersection
and the union of the two rectangles. Let A be the area of the
detected rectangle, B be the area of the ground-truth rectangle
representing the pallet, let C and D be the area of their
intersection and union respectively (D = A + B − C). The
following evaluation criteria are used:

• strong positive match - corresponds to a high absolute
overlap in the x direction, and a high relative overlap
in the y direction (z axis for the AGV):

|D.width− C.width| < 10px (6)

C.height/D.height > 0.7 (7)

• weak positive match - corresponds to a moderate/high
absolute overlap in the x direction, and a moderate
relative overlap in the y direction (z axis for the AGV):

|D.width− C.width| < 15px (8)



C.height/D.height > 0.5 (9)

• strong false positive - corresponds to a low overall
overlap:

C.width/D.width ·C.height/D.height < 0.4 (10)

• weak false positive: otherwise

We opt for the absolute difference in the x direction since
the precision is crucial on the x axis. The 10 pixel threshold
corresponds to approximately 2.1 cm at 2 m with our current
setup. We then calculate the detection rate for the strong
positives and weak positives. The false positive rate takes into
consideration only the strong false positives since the weak
false positives give the correct position of the pallet at all times
but fail the precision constraint.

Using these criteria we have obtained on the Viano1 test
set a detection rate for weak positives of 94% (5007 out of
5333); a detection rate for strong positives of 84% (4476 out
of 5333); a false positive rate of 1.5% (80 out of 5333).

Table V shows the test results on the Viano2 test set,
which contains 6707 labeled pallets from 37 different scenes.
The majority of misses are due to pallets at non-standard
distances, reflections from plastic covering the pallets, other
objects similar to pallets present in the images. The influence
of each parameter was tested. It can be observed that histogram
equalization drastically improves the detection performance.
Introducing stereo features and enforcing correct aspect ratios
help with more exact localization (higher strong true positive
rate).

For distance estimation precision we first perform online
pallet detection on a dummy pallet. The distance to the
detected pallet is estimated at given positions in the working
range (1000-2500 mm). Each distance is measured at least
100 times in slightly varying lighting conditions to evaluate
the standard deviation of the measurements. This test shows
(see Table II) that all errors are below 1.5 cm at 1 standard
deviation. An increase in precision can be obtained by further
tuning the parameters from the stereo reconstruction. We can
also correct the distance values by estimating the model of the
error as a function of the stereo disparity value.

Additional tests were performed to determine whether or
not the selected classifier is suitable for the detection task.
Several classifiers were considered starting with a simple
manually tuned decision stumps which are constraints on
the features (such as the distance of the left and right legs
must be the same). This classifier can be used as a baseline
and it is the fastest one. We consider several variants of
boosted classifiers with 100-1000 weak learners and cascaded
prediction. SVM is also applied (using the libsvm library) with
linear kernel function, even though the execution time is large.
Table III compares the classifiers on a smaller dataset Viano2.
The execution time provided is the time required to make
300,000 predictions, which is the typical number of candidates
for a thorough and reliable detection. A comparison of the
DET (Detection Error Tradeoff) curve for sevaral classifiers is
illustrated in Figure 4. We provide the area under the curve up
to the 100 mark as a single performance metric - the lower the
value the better the classifier. Even though the cascaded version
performs best, in practice the rejection thresholds may cause

TABLE II: Distance measurements and stereo depth estimation
- all values are in millimeters

Real Avg. absolute Max. absolute Standard Error
distance error error deviation at 1 σ

1000 1.84 4.11 0.91 2.74

1500 2.59 13.15 2.14 4.73

1800 3.00 10.18 3.32 6.32

2000 6.18 8.87 0.90 7.08

2100 2.40 14.28 2.93 5.33

2100 2.40 14.28 2.93 5.33

2200 4.85 20.69 5.67 10.53

2300 10.27 24.77 3.89 14.17

2400 3.96 15.02 4.46 8.42

2500 6.74 24.40 8.25 14.99

TABLE III: Detection rate, false positive rate and execution
time for 300k instances of different classifiers on the Viano2
training set

Classifier Detection False positive Execution
tpye rate [%] rate [%] time [ms]

Boosted 1000 DTs 99.81 0.18 3140

Cascaded 1000 DTs 99.07 0.19 140

Boosted 100 DTs 98.69 0.74 180

Linear SVM 58.69 39.25 55000

Manual Decision Stumps 51.40 37.57 4

TABLE IV: Typical execution time of each processing step -
rectification is performed on the full 2048px by 2048px image
while other steps only on the region of interest. Total time
includes other minor processing.

Step Boosted1000 [ms] Cascaded1000 [ms]
Rectification 35 35

Stereo matching 338 190

Pallet detection 3788 195

Total 4180 430

premature the elimination of true positives. Table IV compares
the execution time of the major processing steps in two
configurations: 4 directional stereo aggregation with boosted
1000 decision trees; and 2 directional stereo aggregation with
1000 cascaded decision trees.

VI. CONCLUSION

This paper presented a solution for automatic pallet detec-
tion by combining stereo reconstruction and object detection
from monocular images. The selected method can perform
detection under 1 second and the tests show that it can provide
the desired accuracy. We demonstrate the performance of
the method by evaluating it on recorded sequences from a
real warehouse. The optimal classifier based on experimental
results is an ensemble classifier with 1000 boosted decision
trees, with cascaded prediction that relies on both stereo and
intensity features.

Future work will involve improving the robustness of the
detection method by automatically setting the exposure time
for the cameras, by improving the classifier’s precision and by



TABLE V: Viano2 test set (0 means not used): blur - Gussian
blur; h. eq. - histogram equalization; stereo - stereo disparity
features; negs - number of negative samples per each training
image; center - penalize detections that are far from the center;
aspect - enforce good aspect ratio; wtp - weak true positive
rate; stp - strong true positive rate

blur h. eq. stereo negs center aspect wtp stp
1 1 1 5k 0 0 95.14% 76.29%

1 1 1 5k 1 1 94.50% 78.70%

1 1 1 5k 0 1 94.88% 79.28%
1 1 1 5k 1 0 94.70% 75.53%

0 1 1 5k 0 0 91.36% 75.91%

1 0 1 5k 0 0 72.83% 56.85%

1 1 0 5k 1 0 96.07% 78.18%

1 1 1 500 0 0 92.12% 73.61%

Fig. 2: Sample detections from the Viano1 dataset. The num-
bers indicate the score (confidence) of each detection.

(a) overexposed image of a bare pallet (b) material covering the right pallet

Fig. 3: Successful detections from Viano2 in difficult cases.
3D point and orientation angle (in centidegrees) is indicated
for each pallet.

validating the detections using multiple methods. Several of
the validation methods still need to refined and implemented.
Further online tests with actual AGV loading operations are
required to validate the experimental results.
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